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Swin-UMamba†: Adapting Mamba-based vision
foundation models for medical image

segmentation
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Yizhou Yu, Shaoting Zhang, Hairong Zheng, Shanshan Wang

Abstract— Vision foundation models have shown great
potential in improving generalizability and data efficiency,
especially for medical image segmentation since medical
image datasets are relatively small due to high annotation
costs and privacy concerns. However, current research on
foundation models predominantly relies on transformers.
The high quadratic complexity and large parameter counts
make these models computationally expensive, limiting
their potential for clinical applications. In this work, we
introduce Swin-UMamba†, a novel Mamba-based model for
medical image segmentation that seamlessly leverages the
power of the vision foundation model, which is also com-
putationally efficient with the linear complexity of Mamba.
Moreover, we investigated and verified the impact of the
vision foundation model on medical image segmentation,
in which a self-supervised model adaptation scheme was
designed to bridge the gap between natural and medi-
cal data. Notably, Swin-UMamba† outperforms 7 state-of-
the-art methods, including CNN-based, transformer-based,
and Mamba-based approaches across AbdomenMRI, En-
coscopy, and Microscopy datasets. The code and models
are publicly available at: https://github.com/JiarunLiu/Swin-
UMamba.
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I. INTRODUCTION

Medical image segmentation plays an important role in
modern clinical practice to facilitate accurate diagnoses, dis-
ease progress monitoring, and treatment planning [1], [2]. Tra-
ditionally, this task heavily relies on the expertise of clinicians,
leading to labor-intensive and time-consuming segmentation
procedures. Moreover, the inherent subjectivity and inter-
observer variability among experts can introduce inconsisten-
cies in segmentation [3]. These highlight the need for auto-
mated segmentation methods to enhance efficiency, accuracy,
and consistency in medical image analysis, facilitating precise
and rapid diagnoses [4].

Deep learning models have witnessed remarkable advance-
ments in automatic medical image segmentation [5]–[9]. How-
ever, these methods heavily rely on large-scale, task-specific,
and crowd-labeled data to train a deep neural network (DNN)
for a specific task [10], which is challenging to generalize
to other tasks. Besides, collecting large-scale medical datasets
can be challenging due to high annotation costs and privacy
concerns [11]. Training deep neural networks on small datasets
may lead to limited model performance and poor generaliz-
ability for clinical practice [12]. The lack of large and high-
quality labeled datasets limits the application of supervised
deep learning in medical image analysis.

Recent research has demonstrated vision foundation models
[13]–[20] can achieve remarkable performance without relying
on large-scale high-quality labeled datasets for various medical
tasks. These models are usually pretrained on large-scale
datasets to learn robust and generalizable feature represen-
tations. Transformer-based architecture is a popular choice
for foundation models, as they attain excellent results when
pretrained at a sufficient scale, and can be transferred to var-
ious tasks with fewer datapoints [21]. However, despite their
advantages, foundation models often have high computational
costs due to the quadratic complexity of the attention mecha-
nism [22] and the large number of parameters. This limitation
hinders their practical use in clinical settings, especially where
computational resources are constrained. In contrast, CNNs
are more efficient in processing image data but struggle with
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modeling long-range dependencies due to their local receptive
field imposed by the convolution operation [23]. Therefore,
there is an urgent need to develop foundation models that can
not only enhance generalizability and data efficiency but also
hugely improve the computational efficiency for specialized
tasks.

In contrast to transformer-based models, structured state
space sequence models (SSMs) [24], [25] have demonstrated
efficiency and effectiveness in long sequence modeling, show-
ing potential for next-generation foundation models. Unlike
the quadratic complexity of transformers, SSMs scale linearly
or near-linearly with sequence length while maintaining the
capability of modeling long-range dependencies. The latest
work Mamba [22] demonstrated the cutting-edge performance
of SSMs in long-sequence data analysis tasks, such as natural
language processing and genomic analysis. The efficiency
of SSMs also helps in high-resolution image processing,
e.g., whole-slide pathology images [26] and high-resolution
MRI/CT scans [27]. Several latest studies have preliminarily
explored the effectiveness of Mamba in the vision domain
[28]–[32]. However, these Mamba-based models are often
trained from scratch without leveraging transfer learning from
existing foundation models [29], [31], which could enhance
data efficiency and generalizability in medical image segmen-
tation tasks [33]. Further research is in need to evaluate and
optimize the integration of Mamba-based foundation models
into the medical domain.

To effectively adapt Mamba-based models in medical image
segmentation tasks, the first challenge lies in the fact that the
structure of existing Mamba-based models for medical image
segmentation often differs from popular vision foundation
models [29], [31], posing challenges in effectively integrating
foundation models to improve segmentation performance. An-
other challenge is that current Mamba-based vision foundation
models are primarily trained on natural image datasets, such
as ImageNet, where the natural images are distinct from
medical images in visual appearance, data modalities, and
segment targets. Directly adopting general vision foundation
models in medical image segmentation tasks may result in
suboptimal performance due to this gap [23]. Given the fact
that the application of Mamba blocks in the vision domain
is relatively new, further experimental evaluation is required
for Mamba-based medical image segmentation. Additionally,
there is a need to further enhance the scalability and efficiency
of Mamba-based models for real-world deployment [34].

In this paper, we proposed a Mamba-based network Swin-
UMamba† leverages the power of vision foundation models
with a generic Mamba-based encoder and a Mamba-based de-
coder. An additional network Swin-UMamba was introduced
with a CNN-based decoder to evaluate the impact of the vision
foundation models in medical image segmentation tasks under
different settings. Moreover, we proposed a self-supervised
model adaption scheme to bridge the gap between large-scale
pretraining datasets and medical image segmentation datasets.
Our main contributions can be summarized as follows:

• We are the first attempt to discover the impact of the
Mamba-based vision foundation model for medical image
segmentation. The results verified the effectiveness of the
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Fig. 1: The segmentation score, GFLOPs versus model size
based on the average results across AbdomenMRI, Endoscopy,
and Microscopy datasets. The size of each circle indicates the
size of the model, and the position of the center point indicates
the segmentation score and GFLOPs. Scratch denotes the
model was trained from scratch, while the red arrow indicates
the improvement by fine-tuning with a foundation model. The
grey circles in the bottom left indicate the model size with 10
million, 40 million, and 70 million parameters, respectively.

Mamba-based foundation model.
• We propose a Mamba-based medical image segmentation

network to leverage the power of foundation models.
• To bridge the gap between natural and medical data, we

introduce an additional self-supervised model adaption
scheme.

• Extensive experiments on AbdomenMRI, Endoscopy, and
Microscopy datasets demonstrate that Swin-UMamba†
outperforms 7 state-of-the-art segmentation models, in-
cluding CNNs, ViTs, and the latest Mamba-based models.
Our results show notable improvements in segmentation
accuracy, along with significantly fewer model parameters
and FLOPs.

II. RELATED WORKS

A. Automatic medical image segmentation

1) CNN-based methods: CNN has become one of the
fundamental networks in vision applications [35] that excel
at capturing translational invariances features. However, it is
challenging for CNNs to capture long-range dependencies due
to their intrinsic locality [23]. The limited receptive field can
lead to sub-optimal performance when dealing with structures
across various shapes and scales [35]. Atrous convolution [36]
can enlarge the receptive field, but it causes the loss of detailed
information [35]. A widely adopted model in medical image
segmentation is U-Net [9], which leverages a U-shape architec-
ture to capture both global context and local details. However,
U-Net does not solve the intrinsic locality issue of convolution.
nnU-Net [8] further enhances U-Net by enabling automatic
configuration of preprocessing, network architecture, training,
and post-processing for any new segmentation task. SegResNet

This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMI.2024.3508698

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing University. Downloaded on September 12,2025 at 05:30:31 UTC from IEEE Xplore.  Restrictions apply. 



JIARUN LIU et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS ON MEDICAL IMAGING 3

[37] adds an additional variational auto-encoder branch to
impose additional constraints. Nevertheless, improving CNN’s
ability to model long-range dependencies remains an open
question.

2) Transformer-based methods: The transformer architec-
ture was originally introduced for natural language processing
with the attention mechanism. ViT [21] firstly adopts trans-
former into vision tasks by transforming the image into a
sequence of patches. Compared with CNNs, ViT can capture
global context through attention. This is important for accurate
medical image segmentation since the organs can spread
over a large receptive field. Besides, it helps the model in
preventing misclassification when medical images pose high
fine-grained variability [23]. Swin-Unet [38] firstly proposed
a pure transformer-based architecture based on the Swin-
Transformer without convolution layer for medical image
segmentation. In contrast, UNETR [39] and TransUNet [40]
incorporate a CNN-based decoder for precise localization,
where CNNs are sophisticated at local information modeling.
Swin-UNETR [41] further improves UNETR with shifted win-
dows [42]. Another hybrid approach is nnFormer [6], which
exploits the combination of interleaved convolution and self-
attention operations and significantly outperforms previous
transformer-based counterparts. Despite their advantages, the
transformer poses a high quadratic complexity of attention
with respect to the sequence length, leading to a heavy com-
putation burden [22], particularly for high-resolution images
[29], [31]. Besides, due to the lack of effective inductive
bias, pretraining on large-scale datasets is widely adopted for
transformer-based models to avoid overfitting and improve
the segmentation performance [23]. Some methods enhance
the segmentation performance by incorporating multimodal
data [43]–[45], which can provide complementary information
beyond images. However, this study focused on optimizing the
Mamba-based model using image data to establish a strong
baseline before exploring the integration of multimodal data.

B. State space models in vision

State space models (SSMs) have recently emerged as a
promising architecture class for sequence modeling in deep
learning. This class of models can be computed very efficiently
as either a recurrence or convolution, with linear or near-linear
scaling in sequence length. Structured state space sequence
models (S4) [24] improve SSMs by imposing structured forms
on the state matrix, which was crafted and initialized with
high-order polynomial projection operator [46]. In addition
to S4, Mamba [22] incorporated an input-dependent selection
mechanism and an efficient hardware-aware algorithm. It helps
the model filter out irrelevant information and improves the
ability for efficient long sequence modeling. Vim [31] is one
of the preliminary works that adopt Mamba in vision tasks
by introducing a generic vision backbone with bidirectional
Mamba blocks. Vim demonstrates the advantage of using
Mamba in vision tasks by providing higher accuracy, lower
computation burden, and less memory consumption. However,
the distinction between 2D visual data and 1D language se-
quences requires careful consideration when adopting Mamba

into vision tasks. While 2D spatial information is crucial in
vision tasks [29], it is not the primary focus in 1D sequence
modeling. Directly adopting Mamba to flattened images would
inevitably result in restricted receptive fields, where the re-
lationships against unscanned patches cannot be estimated.
VMamba [29] introduced a cross-scan module to solve the
direction-sensitive problem due to the difference between 1D
sequences and 2D images. Despite their successes in various
vision tasks, models like Vim and VMamba are primarily
trained on the ImageNet dataset, leaving their potential for
medical image segmentation remains unexplored. U-Mamba
[28] adopts Mamba in medical image segmentation tasks by
incorporating the Mamba block into the nnU-Net framework
[8]. Although Mamba-based models have achieved promising
results in vision tasks, training a Mamba-based model from
scratch on medical image segmentation datasets may yield
suboptimal performance. Mamba-based models face the same
challenges as transformers in lacking effective inductive bias
in image data modeling [47].

III. METHOD

This paper proposes a Mamba-based network Swin-
UMamba† that leverages the power of the vision foundation
model for medical image segmentation. It follows the classic
U-Net structure with: 1) a Mamba-based encoder to take the
power of the Mamba-based vision foundation model, 2) a
Mamba-based decoder to predict segmentation masks, and
3) skip connections to bridge the gap between low-level
details and high-level semantics. Additionally, we propose
Swin-UMamba with a CNN-based decoder to investigate the
impact of foundation models with different network structures.
Moreover, we introduced a self-supervised model adaption
scheme to bridge the gap between natural and medical data.
The following sections will introduce the detailed structure of
Swin-UMamba† and Swin-UMamba.

A. Preliminary

Recent studies demonstrate the efficiency of SSMs in se-
quence modeling tasks. It maps 1D sequence x(t) ∈ RL

to y(t) ∈ RL with a compressed hidden state h(t) ∈ RN ,
enabling each element in the sequence (e.g., text sequence) to
interact with any of the previously scanned samples. SSM can
be formulated as linear ordinary differential equations (ODEs):

h′(t) = Ah(t) +Bx(t)

y(t) = Ch(t) + λx(t)
(1)

where A ∈ RN×N , B ∈ RN×1, and C ∈ R1×N are
parameters of SSM for a state size N and λ ∈ R1 is the weight
of skip connection. To integrate SSMs into deep learning, S4
[24] discrete the ODEs into a discrete function with the input
xk ∈ RL×D:

hk = Āhk−1 + B̄xk

yk = C̄hk + λx(t)
(2)
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Fig. 2: The overall training scheme and the model architecture of Swin-UMamba†. Top: To fill the gap between natural and
medical data, we proposed a self-supervised model adaption scheme. Bottom: The overall architecture of Swin-UMamba†.
Swin-UMamba† can leverage the power of vision foundation models, whereas each block within the grey box was initialized
with the weights from a foundation model. The structure of the VSS block is illustrated on the right of the model.

The discrete parameters Ā, B̄, C̄ can be discretized with the
zero-order hold rule:

Ā = exp(∆A),

B̄ = (exp(∆A)− I)A−1B,

C̄ = C

(3)

In practice, B̄ can be approximated with first-order Taylor
series:

B̄ = (exp(∆A)− I)A−1B ≈ (∆A)(∆A)−1∆B = ∆B
(4)

Mamba further extends the S4 operator with a selective scan
mechanism, i.e. S6. The SSM matrices B, C, and ∆ of S6
are derived from the input data x with three linear functions.
Selective scan helps control information that propagates or
interacts along the sequence dimension. We refer to [22], [29]
for further details about S6.

B. Mamba-based VSS block
Representing visual data is challenging for Mamba-based

models since Mamba is only able to estimate the relationship
against scanned patches [29], [31], resulting in a restricted
receptive fields issue. Drawing from insights presented in [29],
we introduce the visual state space (VSS) block as the basic
unit in Swin-UMamba† to solve this issue with 2D-selective-
scan (SS2D). As illustrated in Fig. 3, SS2D unfolds image

patches into feature sequences in four different scan directions.
These sequences consist of the same image features but are
arranged in different orders. Each sequence will be processed
through the same S6 operator and then merged back to form
the complete 2D feature map. Given input feature z, the output
feature z̄ of SS2D can be written as:

zv = expand(z, v) (5)
z̄v = S6(zv) (6)
z̄ = merge(z̄1, z̄2, z̄3, z̄4) (7)

where v ∈ V = {1, 2, 3, 4} represents four different scanning
directions. expand(·) and merge(·) correspond to the scan
expand and scan merge operations in [29]. The other com-
ponents of the VSS block follow the design in [22]. Fig. 2
illustrates the overall structure of VSS block.

C. Integrating Mamba-based vision foundation model

The primary challenge lies in effectively integrating vision
foundation models into medical image segmentation tasks.
Prior research [28] typically employs a task-specific architec-
ture with Mamba blocks, which fails to consider the transfer-
ability from generic vision models. To address this limitation,
we develop an encoder that shares a similar structure with
the latest Mamba-based foundation model VMamba-Tiny [29].
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Fig. 3: Illustration of 2D-selective-scan (SS2D). SS2D first expands 2D image features in four different directions and then
merges the processed sequences back after S6.

This model, pretrained on the extensive ImageNet dataset with
multi-scale features, enables us to integrate the power of the
vision foundation model to extract information with long-
range modeling capability, mitigate the risk of overfitting, and
establish a robust initialization.

As illustrated in Fig. 2, the encoder of Swin-UMamba†
consists of 4 stages. The initial stage comprises a 4× 4 patch
embedding layer and 2 VSS blocks. It maps the input image
from H ×W × C into feature maps of shape H

4 × H
4 × 96.

Subsequent stages are composed of a patch merging layer [42]
for 2× down-sampling and multiple VSS blocks for high-level
feature extraction. The numbers of VSS blocks at each stage
are {2, 2, 9, 2}, respectively. Unlike ViT, Swin-UMamba† does
not adopt position embedding due to the causal nature of the
VSS block [29]. The feature dimensions increase quadratically
with the stages, resulting in D = {96, 192, 384, 768}. The
weights of the VSS blocks and patch merging layers are
initialized from VMamab-Tiny [29]. Since the number of input
channels may differ across datasets, we did not use the weights
of the patch embedding layer in this scenario.

D. Mamba-based decoder
Similar to the widely adopted U-shaped structure, Swin-

UMamba† uses a decoder based on the VSS block. The overall
architecture leverages skip connections to recover low-level
details and employs a multi-scale encoder-decoder structure
for high-level information extraction. Inspired by [38], we use
a patch expanding layer to perform the up-sampling operation
at each decoding stage.

Take the first decoding stage as an example. The input
features of size

{
H
32 × W

32 × 768
}

are up-sampled through
the patch expanding layer to the size of

{
H
16 × W

16 × 384
}

.
Subsequently, these up-sampled features are combined with
the skip-connected features, followed by a linear projection
to ensure consistent feature dimensions before concatenation.
Next, the concatenated features are processed through 2 VSS
blocks. To enable deep supervision, a 1× 1 convolution layer
is added after each stage to generate segmentation outputs.
Specifically, the patch expanding layer of the final stage
performs a 4× up-sampling operation, mirroring the 4 × 4
patch embedding layer. After the last patch embedding layer,
a 1×1 convolution is applied to adjust the feature dimension to
match the number of classes K for final segmentation. Besides,
a pure Mamba-based structure helps to reduce the number of

network parameters and enhance computation efficiency, since
Mamba exhibits a linear complexity with sequence length [22].
Swin-UMamba† significantly saves the number of network
parameters to 28M and FLOPs to 18.9G, whereas other models
may encounter twice or even more computations.

E. Swin-UMamba with CNN-based decoder

To further investigate the impact of the vision foundation
model for Mamba-based segmentation with various structures,
we proposed Swin-UMamba with a CNN-based decoder. Com-
pared with Swin-UMamba†, Swin-UMamba mainly varies
in the type of decoder blocks and the number of encod-
ing/decoding stages.

We add an additional stem stage with a 7 × 7 convolution
layer for 2× down-sampling before the patch embedding layer.
The patch size of the patch embedding layer is reduced to
2 × 2 to keep the shape of features to the VSS blocks.
This modification helps to perform a gradual down-sampling
process where each stage takes 2× down-sampling. Skip
connection is adopted at each scale, including the original
image. This scheme aims to retain low-level details, which
is important for medical image segmentation [9], [48].

To enhance the native up-sample block in U-Net, we intro-
duce two modifications: 1) an extra convolution block with a
residual connection to process skip connection features, and
2) an additional segmentation head at each scale for deep
supervision [49]. Given skip-connected features z′l from stage-
l and features zl+1 from the last up-sample block, the output
features zl of l-th up-sample block and the segmentation map
yl ∈ Rhl×wl×K at stage-l can be formulated as follows:

ẑl = Res
(2)
l (Cat(zl+1, Res

(1)
l (z′l))) (8)

zl = DeConvl(ẑl) (9)
yl = Convl(ẑl) (10)

where Cat(·), DeConvl(·), Convl(·) are the feature concate-
nation operation, transpose convolution, and a segmentation
head with 1×1 convolution that project feature from dimension
dl to the number of class K, respectively. hl and wl are the
height and width of the feature map at stage-l. Res

(1)
l (·) and

Res
(2)
l (·) are two convolution blocks with residual connection

at stage-l. Each Res(·) is composed of two convolution layers
with LeakyRELU activation.
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F. Self-supervised model adaption

Foundation models can provide a good initialization for
various downstream tasks. However, current Mamba-based
vision foundation models are mostly pretrained on large-
scale natural image datasets, such as ImageNet. The data
distributions of ImageNet and medical datasets are different
since they have different data modalities and target objects.
As illustrated in Fig. 2, to overcome the distribution shift and
maximize the potential of foundation models, we introduce an
additional self-supervised model adaption scheme with masked
image modeling (MIM) [50], [51] on the corresponding med-
ical dataset. Specifically, for each image x, we masked out
60% image patches before inputting it into the model. The
model consists of two components: a Mamba-based encoder
to process image features and a lightweight one-layer head
to map the feature vector to the pixel space. The target of
the model is to predict the raw pixel values of the randomly
masked patches:

LMIM =
1

Ω(xM )
∥ȳM − xM∥1 (11)

where ȳ is the model predictions. M is the set of masked
pixels, Ω(xM ) is the number of masked pixels. Reconstructing
the raw pixel values from masked images encourages the
model to learn useful features from the medical images without
human annotations.

With the model adaption scheme, the training can be divided
into three stages: 1) pretrain the encoder on the ImageNet
dataset; 2) adapt the encoder on the target medical segmenta-
tion dataset with masked image modeling; 3) fine-tuning with
Swin-UMamba† on the segmentation dataset. Our experiment
results show that this self-supervised model adaption scheme
helps to minimize the gap between the natural and medical
datasets, thus improving the segmentation accuracy and train-
ing speed.

IV. EXPERIMENTS

A. Datasets

We assess the performance and scalability of Swin-
UMamba† on three different medical image segmentation
datasets, covering organ, instrument, and cell segmentation
tasks. These datasets vary in resolution and imaging modali-
ties, offering insights into the model’s efficacy and adaptability
in diverse medical imaging scenarios.

1) Abdomen MRI (AbdomenMRI): This dataset focused on
segmenting 13 abdominal organs from MRI scans, including
the liver, spleen, pancreas, right kidney, left kidney, stomach,
gallbladder, esophagus, aorta, inferior vena cava, right adrenal
gland, left adrenal gland, and duodenum. It was originally
provided by the MICCAI 2022 AMOS Challenge [52]. We
followed the settings in [28] employing additional 50 MRI
scans for testing. There are 60 MRI scans with 5615 slices
for training and 50 MRI scans with 3357 slices for testing.
We cropped the images into patches of size (320, 320) for
training and testing with the nnU-Net framework [8].

2) Endoscopy images (Endoscopy): This dataset aims to
segment 7 instruments from endoscopy images, including
the large needle driver, prograsp forceps, monopolar curved
scissors, cadiere forceps, bipolar forceps, vessel sealer, and
drop-in ultrasound probe. It was originally from the MICCAI
2017 EndoVis Challenge [53]. It consists of 1800 image
frames for training and 1200 image frames for testing. Images
were cropped into (384, 640) following the data processing
procedure within nnU-Net for both training and testing. It’s
worth noting that images in this dataset exhibit a unique aspect
ratio compared to other datasets.

3) Microscopy images (Microscopy): This dataset focuses
on cell segmentation in various microscopy images from the
NeurIPS 2022 Cell Segmentation Challenge [54]. It consists
of 1000 images for training and 101 images for evaluation.
The images in Microscopy were cropped into (512, 512) for
training and testing. By default, it is an instance segmentation
dataset. We employed the same data processing strategy as
described in [28] for this dataset.

B. Implemetation details
We implemented Swin-UMamba† and Swin-UMamba on

top of the well-established nnU-Net framework [8]. Its self-
configuring feature enabled us to focus on network design
rather than other trivial details. The loss function for the
segmentation network was the sum of Dice loss and cross-
entropy (CE) loss:

Lseg = LDice + LCE (12)

In practice, we perform deep supervision [49] during the
training.

Lall =
∑

αiL
Ψi
seg (13)

where Ψi denote the image resolution scale factor i and αi =
1/2i is corresponding weight factor which will normalized
to 1. For Swin-UMamba, Ψ =

{
1×, 1

2×, 1
4×, 1

8×
}

. Swin-
UMamba† use a different Ψ because it did not have feature
map at 1

2× scale, where Ψ =
{
1×, 1

4×, 1
8×

}
. We used

an AdamW optimizer with weight decay = 0.05 following
[29]. A cosine learning rate decay was adopted with an
initial learning rate = 0.0001. During training, we froze
parameters from the foundation model for the first 10 epochs
to align other randomly initialized modules. Hyperparameters
were kept consistent across all three datasets, except for the
number of training epochs and data-specific settings (e.g.,
image size). Our models were trained for 200 epochs on the
AbdomenMRI dataset, 400 epochs on the Endoscopy, and
500 epochs on the Microscopy dataset. Following [28], we
disabled the testing time augmentation for a more streamlined
and efficient evaluation.

During the self-supervised model adaptation stage, we
adopted the latest Mamba-based foundation model VMamba-
Tiny [29] that was pretrained on ImageNet to initialize our
model. We froze the encoder weights for the first 10 epochs.
The overall training epochs in the self-supervised model
adaptation stage are 50 epochs for the AbdomenMRI dataset,
200 epochs for the Microscopy dataset, and 800 epochs for the
Endoscopy dataset. All images were resized to 192px×192px
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Fig. 4: Example visualization results of the three datasets. a) and b) are visualization examples of the AbdomenMRI dataset,
c) and d) are visualization examples of the Endoscopy dataset, and e) and f) are visualization examples of the Microscopy
dataset. Swin-UMamba† accurately recognizes the shape and type of the segmented targets.

during this stage. We use the AdamW optimizer with a
learning rate of 2e-4. For more details, please refer to our
open-source codes1.

C. Comparison methods and evaluation metrics
We select three types of methods for comparison, including

CNN-based (nnU-Net [8], SegResNet [37]), transformer-based
(UNETR [39], Swin-UNETR [41], nnFormer [6]), and the
latest Mamba-based segmentation network U-Mamba [28].
Specifically, U-Mamba has two variants: U-Mamba Bot and
U-Mamba Enc. U-Mamba Bot only adopts the Mamba block
in the bottleneck, while U-Mamba Enc adopts the Mamba
block in each encoder stage. We compared Swin-UMamba†
with both U-Mamba Bot and U-Mamba Enc. It’s worth noting
that adopting the same foundation model into U-Mamba
or other comparison methods is not straightforward due to
structural differences from foundation models [29]. The re-
sults of nnU-Net, SegResNet, UNETR, Swin-UNETR, and U-
Mamba were referenced from [28], where these models were

1 https://github.com/JiarunLiu/Swin-UMamba

trained from scratch for 1000 epochs using stochastic gradient
descent and an unweighted sum of Dice and cross-entropy
loss. The results for nnFormer [6] are based on the official
implementation. We train nnFormer for 1000 epochs with the
default Adam optimizer and the same unweighted sum of Dice
and cross-entropy loss.

We use the dice similarity coefficient (DSC) and normalized
surface distance (NSD) to assess segmentation performance
on the AbdomenMRI and Endoscopy datasets. For the Mi-
croscopy dataset, we follow [28] and [54] to use the F1
score for evaluation as it is an instance segmentation task.
Furthermore, we compute the number of network parameters
(#param) and floating-point operations (FLOPs) with the fv-
core package2 to assess the scale and computational costs of
each model. If not otherwise specified, we use w/ foundation
model to indicate the model was trained on the ImageNet
pretrained VMamba-Tiny model with self-supervised model
adaption. On the contrary, w/o foundation model indicates
that the model was trained from scratch without pretraining

2 https://github.com/facebookresearch/fvcore
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TABLE I: Results of organ segmentation on the AbdomenMRI
dataset. The results of nnU-Net, SegResNet, UNETR, Swin-
UNETR, and U-Mamba were referenced from [28]. *: Deep
supervision was disabled.

Methods #param FLOPs DSC NSD

CNN-based
nnU-Net 33M 23.3G 0.7450±0.1117 0.8153±0.1145
SegResNet 6M 24.5G 0.7317±0.1379 0.8034±0.1386

Transformer-based
UNETR 87M 42.1G 0.5747±0.1672 0.6309±0.1858
SwinUNETR 25M 27.9G 0.7028±0.1348 0.7669±0.1442
nnFormer 60M 50.2G 0.7279±0.1486 0.7963±0.1322

Mamba-based
U-Mamba Bot 63M 45.7G 0.7588±0.1051 0.8285±0.1074
U-Mamba Enc 67M 49.9G 0.7625±0.1082 0.8327±0.1087

w/o foundation model
Swin-UMamba 60M 68.0G 0.7054±0.1387 0.7647±0.1455
Swin-UMamba†∗ 28M 18.9G 0.6653±0.1123 0.7312±0.1199

w/ foundation model
Swin-UMamba 60M 68.0G 0.7704±0.0936 0.8354±0.0956
Swin-UMamba† 28M 18.9G 0.7767±0.0940 0.8428±0.0938

or additional adaptation stages.

D. Results on AbdomenMRI dataset
The segmentation results on the AbdomenMRI dataset are

presented in Table I. All Mamba-based networks outper-
form CNN-based and transformer-based baselines. The supe-
rior result demonstrates the great potential of the Mamba-
based network in medical image segmentation. Notably,
Swin-UMamba† outperforms all comparison methods, includ-
ing CNN-based networks, transformer-based networks, and
Mamba-based networks. Swin-UMamba† exhibits 1.42% im-
provement in DSC over U-Mamba Enc, which is the previous
SOTA model on this dataset. It is particularly noteworthy that
Swin-UMamba† has less than half of the network parameters
and FLOPs compared to U-Mamba Enc. As illustrated in Fig.
4a, Swin-UMamba† can recognize the shape and type of target
organs, whereas other methods may miss or misclassify some
target regions.

The results in Table I also demonstrate the effectiveness of
foundation models in medical image segmentation across dif-
ferent model architectures. For instance, it leads to significant
increases for both metrics achieved by Swin-UMamba with
6.50% in DSC and 7.07% in NSD. Swin-UMamba can effec-
tively leverage the knowledge from existing foundation models
for segmentation tasks. Moreover, leveraging the vision foun-
dation model facilitates faster and more stable training. Com-
pared with other methods, Swin-UMamba† only requires 100
epochs for training vs 1000 epochs for comparison methods.
Training from scratch can be very unstable, as we found that
Swin-UMamba† fails to converge properly on this dataset with
default settings. To address this issue, we disabled the deep
supervision of Swin-UMamba† when trained from scratch
on the AbdomenMRI dataset. Despite that, Swin-UMamba†
outperforms all baseline methods with a foundation model.
The improvement is particularly noteworthy considering that
Swin-UMamba† has less than half of the network parameters

TABLE II: Results of instruments segmentation on the En-
doscopy dataset. The results of nnU-Net, SegResNet, UNETR,
SwinUNETR, and U-Mamba were referenced from [28].

Methods #param FLOPs DSC NSD

CNN-based
nnU-Net 33M 55.9G 0.6264±0.3024 0.6412±0.3074
SegResNet 6M 58.9G 0.5820±0.3268 0.5968±0.3303

Transformer-based
UNETR 88M 111.5G 0.5017±0.3201 0.5168±0.3235
SwinUNETR 25M 67.1G 0.5528±0.3089 0.5683±0.3123
nnFormer 60M 125.5G 0.6135±0.2763 0.6228±0.2832

Mamba-based
U-Mamba Bot 63M 109.7G 0.6540±0.3008 0.6692±0.3050
U-Mamba Enc 67M 119.8G 0.6303±0.3067 0.6451±0.3104

w/o foundation model
Swin-UMamba 60M 163.6G 0.5483±0.3047 0.5632±0.3085
Swin-UMamba† 28M 45.3G 0.6402±0.3260 0.6547±0.3301

w/ foundation model
Swin-UMamba 60M 163.6G 0.6786±0.2962 0.6936±0.3003
Swin-UMamba† 28M 45.3G 0.6931±0.2976 0.7094±0.3019

and FLOPs compared to the previous SOTA model U-Mamba.
Additionally, the self-supervised model adaption did help the
model to improve performance by reducing the gap between
ImageNet and medical images. We discuss this in Sec.IV-G

We also observed a disparity in parameter numbers and
FLOPs between Swin-UMamba† and Swin-UMamba. This
discrepancy is primarily attributed to the decoder, as the
Mamba-based decoder of Swin-UMamba† have fewer param-
eters than the CNN-based decoder of Swin-UMamba.

E. Results on Endoscopy dataset
Table II presents the segmentation performance of each

model on the Endoscopy dataset. Remarkably, Swin-
UMamba† outperforms U-Mamba Bot by over 3.91% in DSC
and 4.02% in NSD. We noted that the Endoscopy dataset
is smaller than the AbdomenMRI dataset, and models are
prone to overfitting to the training data. Leveraging the power
of a foundation model is an effective strategy for mitigating
overfitting in such small datasets. We observed an impressive
performance gain of 13.03% in DSC and 13.04% in NSD
with the pretrained model for Swin-UMamba, which has much
more parameters than Swin-UMamba†. Additionally, Swin-
UMamba† outperforms U-Mamba Enc by 0.99% in DSC
when trained from scratch. Compared with U-Mamba Enc,
Swin-UMamba† has much fewer network parameters, which
makes it easier to train on a small dataset. The visualized result
of Swin-UMamba† on Endoscopy is shown in Fig. 4b.

F. Results on Microscopy dataset
Table III presents the segmentation performance on the

Microscopy dataset. Swin-UMamba† and Swin-UMamba con-
tinue to outperform all comparison methods by margins
ranging from 2.29% to 22.52% in F1 score. In contrast to
previously mentioned datasets, the Microscopy dataset fea-
tures a higher image resolution, fewer samples, and greater
visual differences. This imposes greater demands on the
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TABLE III: Results of cell segmentation on the Microscopy
dataset. The results of nnU-Net, SegResNet, UNETR, Swin-
UNETR, and U-Mamba were referenced from [28].

Methods #param FLOPs F1

CNN-based
nnU-Net 46M 60.1G 0.5383±0.2657
SegResNet 6M 62.8G 0.5411±0.2633

Transformer-based
UNETR 88M 120.1G 0.4357±0.2572
SwinUNETR 25M 71.7G 0.3967±0.2621
nnFormer 60M 136.7G 0.5332±0.2543

Mamba-based
U-Mamba Bot 86M 117.8G 0.5389±0.2817
U-Mamba Enc 92M 128.7G 0.5607±0.2784

w/o foundation model
Swin-UMamba 60M 174.4G 0.4561±0.2806
Swin-UMamba† 27M 48.2G 0.5186±0.2727

w/ foundation model
Swin-UMamba 60M 174.4G 0.5836±0.2396
Swin-UMamba† 27M 48.2G 0.6219±0.2452

model’s capacity for long-range information modeling and
data-efficiency. As shown in Fig. 4c, Swin-UMamba† can
accurately recognize target cells while baselines may missing
some targets. Moreover, we observe that foundation models are
more effective for Swin-UMamba as it has more parameters,
which makes it harder to train on small datasets. Swin-
UMamba† and Swin-UMamba benefit from the foundation
model by 10.33% and 12.75% in F1 score respectively. This
demonstrates that foundation models can be more useful for
larger models with smaller datasets.

G. The impact of self-supervised model adaption
The experimental results show that the vision foundation

model significantly enhances medical image segmentation,
particularly when using small datasets and larger models. We
further investigate the effect of different pretraining strate-
gies by training the Swin-UMamba† with three initialization
methods: 1) pretrained on medical images, 2) pretrained on
ImageNet, and 3) pretrained on ImageNet followed by self-
supervised adaptation to medical images. As shown in TableV,
the additional self-supervised adaptation consistently improves
segmentation performance across all three datasets compared
to either ImageNet or medical pretraining alone.

The degree of improvement from the medical adaptation
varies between datasets. For instance, it increases the F1
score by 2.31% on the Microscopy dataset over ImageNet
pretraining. On the AbdomenMRI dataset, it improves the
DSC by 0.62%. This additional adaption scheme helps to
bridge the gap between ImageNet and medical image datasets.
Interestingly, direct pretraining on medical data does not
outperform ImageNet pretraining. The ImageNet-pretrained
model achieves better results than directly pretrained with
medical images on all three datasets. A key difference between
the two is the scale of available data for pretraining: ImageNet
contains approximately 200 times more images than the medi-
cal datasets. We hypothesize that pretraining on larger medical
image datasets can further enhance segmentation performance,

0.74 0.76 0.78 0.80 0.82 0.84
DSC / NSD

Swin-UMamba

w/o deep supervision

w/ pretrained decoder
DSC
NSD

Fig. 5: Ablations of different training procedures on the
AbdomenMRI dataset.

TABLE IV: Ablations of different network settings on the
AbdomenMRI dataset.

Methods #param FLOPs DSC NSD

Swin-UMamba† 28M 18.9G 0.7767±0.0940 0.8428±0.0938
w/ symmetric decoder 36M 23.4G 0.7635±0.0964 0.8326±0.0979
w/ symmetric encoder 19M 11.3G 0.7570±0.1021 0.8264±0.1057

although it requires substantial data and computational re-
sources.

H. Ablations

In this section, we present the results obtained by ablation
studies from the perspective of the network structure design,
the training procedure, the Mamba blocks, and the effective
receptive field.

1) Network structure: As shown in Fig. 2, Swin-UMamba†
exhibits an asymmetrical design, with the encoder and decoder
having different blocks in stage 3. Here, we demonstrate two
symmetric structures: 1) increasing the number of VSS blocks
in stage 3 of the decoder to 9 (w/ symmetric decoder), and 2)
reducing the number of VSS blocks in stage 3 of the encoder to
2 (w/ symmetric encoder). As shown in Table. IV, adopting the
symmetric decoder does not yield improved performance but
increases network parameters and computational cost. Using
the symmetric encoder has an observable performance drop
since the structure of the encoder is changed. The knowledge
from the foundation model cannot be effectively transferred to
the modified encoder due to structure differences.

2) Training procedure: We compare two different training
procedures by 1) disabling the deep supervision from train-
ing (w/o deep supervision), and 2) loading the weights of
VMamba-Tiny to the decoder of Swin-UMamba† (w/ pre-
trained decoder). As shown in Fig. 5, loading VMamba-Tiny
to the decoder does not lead to better results. In contrast,
the segmentation performance becomes worse with 1.21%
decrease in DSC and 1.09% decrease in NSD. The structure of
the decoder is different from VMamba-Tiny, thus the impact
of the model can be ineffective. Besides, the data flow in the
decoder is completely reversed to the pretrained backbone.
Disable deep supervision leads to a 0.15% drop in DSC and
0.17% in NSD.

3) Mamba blocks: To assess the effectiveness of different
Mamba blocks, we replace the basic block (VSS block)
in Swin-UMamba† with Vim block [31] and Mamba block
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TABLE V: Results of Swin-UMamba† with different model initialization.

AbdomenMRI Endoscopy Microscopy
Initialization DSC NSD DSC NSD F1

Medical pretraining 0.7208±0.1200 0.7905±0.1269 0.5932±0.3235 0.6072±0.3278 0.5287±0.2700
ImageNet pretraining 0.7705±0.0963 0.8376±0.0981 0.6783±0.2969 0.6933±0.3011 0.5982±0.2364
ImageNet pretraining + medical adaption 0.7767±0.0940 0.8428±0.0938 0.6931±0.2976 0.7094±0.3019 0.6219±0.2452

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
DSC / NSD

VSS block

Vim block

Mamba block
DSC
NSD

Fig. 6: Ablations of different basic blocks with Swin-
UMamba† on the Endoscopy dataset. All models were trained
from scratch without vision foundation model adaptation.

[22]. Compared with the VSS block, the Vim block uses a
bidirectional state space model, while the Mamba block scans
in only one direction. These models were trained from scratch
without vision foundation model adaptation. Experiments were
conducted with the Endoscopy dataset because more stable
training can be achieved on this dataset when the models
are trained from scratch. Each model was trained up to 1000
epochs. Fig. 6 presents the segmentation performance of dif-
ferent blocks. VSS block achieves the best performance, with
Vim block ranking second. The results demonstrate that the
VSS block is more effective than the Vim and Mamba blocks
in medical image segmentation. This suggests that adapting
Mamba for vision tasks is important to avoid suboptimal
performance. Directly applying the Mamba block performs
worst because it would inevitably result in restricted receptive
fields as the relationships with unscanned patches cannot be
estimated [29].

4) Effective receptive field: We compare the effective recep-
tive field (ERF) of Swin-UMamba† with the CNN-based nnU-
Net and the transformer-based UNETR. As shown in Fig. 7,
Swin-UMamba† demonstrates the largest ERF, represented by
the dark area covering the widest region. By having a larger
ERF, the model can capture more comprehensive contextual
information, enabling it to understand the spatial relationships
and dependencies between different parts of the image, thereby
reducing the risk of misclassification. Moreover, We also find
that the ERF was not uniformly distributed across the entire
image. This non-uniform distribution may be correlated to
the real data distribution, where organs tend to appear in the
center region. The ERF was computed based on the output
features of the encoder across 1000 random samples from the
AbdomenMRI dataset.

V. CONCLUSION

This study proposed a novel Mamba-based model Swin-
UMamba† for medical image segmentation. Swin-UMamba†

(a) SegResNet (b) UNETR (c) Swin-UMamba†

Fig. 7: Visualizations of the effective receptive fields (ERFs)
of (a) SegResNet, (b) UNETR, and (c) Swin-UMamba†. A
larger ERF is indicated by a more extensively distributed dark
area. Swin-UMamba† demonstrates the largest ERF.

can effectively leverage the power of the vision founda-
tion model while maintaining the computation efficiency of
Mamba. Extensive experiments suggest that foundation models
offer several advantages for the Mamba-based model in med-
ical image segmentation tasks, including lower computational
resource consumption, superior segmentation accuracy, stable
convergence, mitigation of overfitting issues, and improved
data efficiency. Moreover, we propose a self-supervised model
adaptation scheme to bridge the gap between natural and medi-
cal data domains. In the future, we believe that a Mamba-based
foundation model that is trained on large-scale medical image
data holds the potential to further improve the performance of
medical image analysis.

REFERENCES

[1] W. Bai et al., “A population-based phenome-wide association study of
cardiac and aortic structure and function,” Nature medicine, vol. 26,
no. 10, pp. 1654–1662, 2020.

[2] X. Mei et al., “Artificial intelligence–enabled rapid diagnosis of patients
with COVID-19,” Nature medicine, vol. 26, no. 8, pp. 1224–1228, 2020.

[3] L. Joskowicz, D. Cohen, N. Caplan, and J. Sosna, “Inter-observer
variability of manual contour delineation of structures in CT,” European
radiology, vol. 29, pp. 1391–1399, 2019.

[4] H. Tang et al., “Clinically applicable deep learning framework for organs
at risk delineation in CT images,” Nature Machine Intelligence, vol. 1,
no. 10, pp. 480–491, 2019.

[5] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “Unet++:
Redesigning skip connections to exploit multiscale features in image
segmentation,” IEEE Transactions on Medical Imaging, vol. 39, no. 6,
pp. 1856–1867, 2020.

[6] H.-Y. Zhou et al., “nnFormer: Volumetric medical image segmentation
via a 3D transformer,” IEEE Transactions on Image Processing, vol. 32,
pp. 4036–4045, 2023.

[7] J. Guo, H.-Y. Zhou, L. Wang, and Y. Yu, “UNet-2022: Exploring
dynamics in non-isomorphic architecture,” in Medical Imaging and
Computer-Aided Diagnosis, Lecture Notes in Electrical Engineering,
pp. 465–476, Springer Nature, 2023.

[8] F. Isensee, P. F. Jaeger, S. A. Kohl, J. Petersen, and K. H. Maier-Hein,
“nnU-Net: a self-configuring method for deep learning-based biomedical
image segmentation,” Nature methods, vol. 18, no. 2, pp. 203–211, 2021.

This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMI.2024.3508698

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Nanjing University. Downloaded on September 12,2025 at 05:30:31 UTC from IEEE Xplore.  Restrictions apply. 



JIARUN LIU et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS ON MEDICAL IMAGING 11

[9] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Medical Image Computing
and Computer-Assisted Intervention–MICCAI 2015: 18th International
Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III
18, pp. 234–241, Springer, 2015.

[10] F. Chen et al., “Deep semi-supervised ultrasound image segmentation
by using a shadow aware network with boundary refinement,” IEEE
Transactions on Medical Imaging, vol. 42, no. 12, pp. 3779–3793, 2023.

[11] S. Wang et al., “Annotation-efficient deep learning for automatic medical
image segmentation,” Nature communications, vol. 12, no. 1, p. 5915,
2021.

[12] R. Fan et al., “One-vote veto: Semi-supervised learning for low-shot
glaucoma diagnosis,” IEEE Transactions on Medical Imaging, vol. 42,
no. 12, pp. 3764–3778, 2023.

[13] R. Bommasani et al., “On the opportunities and risks of foundation
models,” arXiv preprint arXiv:2108.07258, 2021.

[14] J. Ma et al., “Segment anything in medical images,” Nature Communi-
cations, vol. 15, no. 1, p. 654, 2024.

[15] J. Cheng et al., “SAM-Med2D,” arXiv preprint arXiv:2308.16184, 2023.
[16] H. Wang et al., “SAM-Med3D,” arXiv preprint arXiv:2310.15161, 2023.
[17] R. J. Chen et al., “Towards a general-purpose foundation model for

computational pathology,” Nature Medicine, vol. 30, no. 3, pp. 850–
862, 2024.

[18] Y. Zhou et al., “A foundation model for generalizable disease detection
from retinal images,” Nature, vol. 622, no. 7981, pp. 156–163, 2023.

[19] Z. Wang et al., “Foundation model for endoscopy video analysis via
large-scale self-supervised pre-train,” in Medical Image Computing and
Computer Assisted Intervention – MICCAI 2023, vol. 14228, pp. 101–
111, Springer Nature Switzerland, 2023. Series Title: Lecture Notes in
Computer Science.

[20] X. Wang et al., “Transformer-based unsupervised contrastive learning for
histopathological image classification,” Medical Image Analysis, vol. 81,
p. 102559, 2022.

[21] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers
for image recognition at scale,” in International Conference on Learning
Representations, 2020.

[22] A. Gu and T. Dao, “Mamba: Linear-time sequence modeling with
selective state spaces,” arXiv preprint arXiv:2312.00752, 2023.

[23] F. Shamshad et al., “Transformers in medical imaging: A survey,”
Medical Image Analysis, vol. 88, p. 102802, 2023.

[24] A. Gu, K. Goel, and C. Re, “Efficiently modeling long sequences
with structured state spaces,” in International Conference on Learning
Representations, 2022.

[25] A. Gu et al., “Combining recurrent, convolutional, and continuous-time
models with linear state space layers,” Advances in neural information
processing systems, vol. 34, pp. 572–585, 2021.

[26] W. Wang et al., “Neuropathologist-level integrated classification of
adult-type diffuse gliomas using deep learning from whole-slide patho-
logical images,” Nature Communications, vol. 14, no. 1, p. 6359, 2023.

[27] J. E. Iglesias et al., “A computational atlas of the hippocampal formation
using ex vivo, ultra-high resolution MRI: Application to adaptive seg-
mentation of in vivo MRI,” NeuroImage, vol. 115, pp. 117–137, 2015.

[28] J. Ma, F. Li, and B. Wang, “U-Mamba: Enhancing long-range
dependency for biomedical image segmentation,” arXiv preprint
arXiv:2401.04722, 2024.

[29] Y. Liu et al., “VMamba: Visual state space model,” arXiv preprint
arXiv:2401.10166, 2024.

[30] Z. Xing, T. Ye, Y. Yang, G. Liu, and L. Zhu, “ SegMamba: Long-range
Sequential Modeling Mamba For 3D Medical Image Segmentation ,”
in proceedings of Medical Image Computing and Computer Assisted
Intervention – MICCAI 2024, vol. LNCS 15008, Springer Nature
Switzerland, October 2024.

[31] L. Zhu, B. Liao, Q. Zhang, X. Wang, W. Liu, and X. Wang, “Vision
Mamba: Efficient visual representation learning with bidirectional state
space model,” arXiv preprint arXiv:2401.09417, 2024.

[32] T. Guo, Y. Wang, and C. Meng, “MambaMorph: a mamba-based back-
bone with contrastive feature learning for deformable mr-ct registration,”
arXiv preprint arXiv:2401.13934, 2024.

[33] J. Liu, H. Yang, H.-Y. Zhou, Y. Xi, L. Yu, C. Li, Y. Liang, G. Shi, Y. Yu,
S. Zhang, H. Zheng, and S. Wang, “Swin-UMamba: Mamba-based
unet with imagenet-based pretraining,” in Medical Image Computing
and Computer Assisted Intervention – MICCAI 2024 (M. G. Linguraru,
Q. Dou, A. Feragen, S. Giannarou, B. Glocker, K. Lekadir, and J. A.
Schnabel, eds.), (Cham), pp. 615–625, Springer Nature Switzerland,
2024.

[34] Y. Zhou, W. Huang, P. Dong, Y. Xia, and S. Wang, “D-UNet: A
dimension-fusion u shape network for chronic stroke lesion segmen-
tation,” IEEE/ACM Transactions on Computational Biology and Bioin-
formatics, vol. 18, no. 3, pp. 940–950, 2021.

[35] R. Wang et al., “Medical image segmentation using deep learning: A
survey,” IET Image Processing, vol. 16, no. 5, pp. 1243–1267, 2022.

[36] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE transactions on
pattern analysis and machine intelligence, vol. 40, no. 4, pp. 834–848,
2017.

[37] A. Myronenko, “3D MRI brain tumor segmentation using autoencoder
regularization,” in Brainlesion: Glioma, Multiple Sclerosis, Stroke and
Traumatic Brain Injuries: 4th International Workshop, BrainLes 2018,
Held in Conjunction with MICCAI 2018, Granada, Spain, September
16, 2018, Revised Selected Papers, Part II 4, pp. 311–320, Springer,
2019.

[38] H. Cao et al., “Swin-Unet: Unet-like pure transformer for medical image
segmentation,” in Computer Vision – ECCV 2022 Workshops, pp. 205–
218, Springer Nature Switzerland.

[39] A. Hatamizadeh et al., “UNETR: Transformers for 3d medical image
segmentation,” in Proceedings of the IEEE/CVF winter conference on
applications of computer vision, pp. 574–584, 2022.

[40] J. Chen et al., “Transunet: Transformers make strong encoders for
medical image segmentation,” arXiv preprint arXiv:2102.04306, 2021.

[41] A. Hatamizadeh, V. Nath, Y. Tang, D. Yang, H. R. Roth, and D. Xu,
“Swin UNETR: Swin transformers for semantic segmentation of brain
tumors in MRI images,” in International MICCAI Brainlesion Workshop,
pp. 272–284, Springer, 2021.

[42] Z. Liu et al., “Swin Transformer: Hierarchical vision transformer using
shifted windows,” in 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 9992–10002, IEEE.

[43] C.-M. Feng, “ Enhancing Label-efficient Medical Image Segmentation
with Text-guided Diffusion Models ,” in proceedings of Medical Im-
age Computing and Computer Assisted Intervention – MICCAI 2024,
vol. LNCS 15008, Springer Nature Switzerland, October 2024.

[44] W. Huang, C. Li, H.-Y. Zhou, H. Yang, J. Liu, Y. Liang, H. Zheng,
S. Zhang, and S. Wang, “Enhancing representation in radiography-
reports foundation model: a granular alignment algorithm using masked
contrastive learning,” Nature Communications, vol. 15, no. 1, p. 7620.
Publisher: Nature Publishing Group.

[45] W. Huang, C. Li, H. Yang, J. Liu, Y. Liang, H. Zheng, and S. Wang,
“Enhancing the vision–language foundation model with key semantic
knowledge-emphasized report refinement,” Medical Image Analysis,
vol. 97, p. 103299.

[46] A. Gu, T. Dao, S. Ermon, A. Rudra, and C. Ré, “Hippo: Recurrent
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